Old School Technology - Bolts, Trephining, and the Stethoscope
New School Technology - Microprocessors and Nano-machines
Regarding Patient Devices

- Always listen to the local expert in the care of these complex patients.
 - Many times the patient and/or the family.
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP

Sir William Osler
History and Physical Examination

- Sir William Osler – July 12, 1849 to December 29, 1919
- Father of Modern Medicine
- Out of the lecture hall to the bedside
- Bedside manner, empowering patients, and autonomy in clinical practice
- Renowned practical joker – Eagerton Y Davis

“Listen to your patient, he is telling you the diagnosis”
What is a Ventricular Assist Device (VAD)?

- Help failing hearts pump blood.
- Advanced or end stage heart failure patients.
- Heart failure effects 5 million Americans and each year an additional 550,000 are diagnosed.
- Heart muscle is too weak to adequately pump blood.
Bridge versus Destination Therapy

- Prolonged wait and limited donors
- 3,000 donor organs each year world-wide
- "buy time" for the patient or eliminate the need for a heart transplant
- Longer-term or ‘destination therapy’ in end-stage heart failure patients when heart transplantation is not an option.
REMATCH Study

• 48% decrease in the death rate from all causes with the LVAD over the first 2 years of use.
• One-year survival in the LVAD group was 52% compared with 25% in the group receiving optimal medical.
REMATCH Study

- 8% (1 out of 12) survived two years in the optimal medical management group.
- 23% were alive at 2 years in the LVAD group.
- 1-year survival for patients under 60 years was 74%.
- Quality of life improved in the LVAD group.
- Conducted on only the sickest patients, who had no alternative options.
LVAD or Pump Basics

- The LVAD (pump) has an inflow conduit that takes blood from the weakened ventricle and pumps it into the aorta via an outflow tract.
- The pump is placed in the upper part of the abdomen.
- The “driveline” is another line (tube) that leaves the body (percutaneously) through the abdominal wall.
 - This is connected to the device’s battery and control system.
First Generation Device
Pulsatile Blood flow
Second Generation Device - Non-Pulsatile Blood Flow

- Blood enters from the left ventricle
- Rotor spins at fixed speed
- Blood exits/returned to the aorta
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP

Slaughter et al
Percutaneous Driveline
Blood Pressure

- 1st Generation Pulsatile
- Traditional BP
- Pulse Oximetry reflects oxygen saturation
- Palpated pulse may appear irregular
 - LVAD pulse and native heart pulse not synchronized
 - LVAD rate reflects perfusion (displayed on controller unit)
 - Palpated pulse (LVAD +/- native heart) will be different from EKG heart rate (native heart only)
Blood Pressure

- 2nd Generation Non-pulsatile axial turbine
- The pump is continuous flow – the impellar may rotate at a rate of between 5,000 and 10,000 rpm
- No audible pump cycling
- Cuff BP will not be measurable
 - Low from poor native heart cardiac output
- Pulse oximetry will not see a capillary pulse wave and may not display a value
 - Unless native heart has sufficient cardiac output
- EKG shows native heart rate and rhythm
Blood Pressure / Basics 2nd Generation

- LVAD cardiac output displayed on controller unit
 - Alarms at less than 2 liters/min output
 - Doppler to obtain a Mean BP
- Goal Mean BP is 70-90
Blood Pressure Basics 2nd Generation

• Low BP
 ▫ Just because you can’t get a BP doesn’t mean it is low
 ▫ Is the patient perfusing? If yes, probably okay
 • Cap refill
 • Mentating properly
 ▫ If BP low – needs fluid
 • VAD patient is preload dependent – needs full tank
Special Considerations

- Non-Pulsatile flow LVAD patients will be on both ASA and Coumadin
 - Bleeding risk especially in trauma
- Pulsatile flow LVAD patients will be on ASA
Common Complications

- Arrhythmia – atrial and ventricular (more common)
- Bleeding
 - GI Bleeding
 - Hemorrhagic CVA
- Stroke
 - Ischemic
- Infection
 - Carefully inspect drive line site
 - Never tug or pull at it
Arrhythmia

- Heart failure patients are at increased risk for arrhythmias
- Many VAD patients will have an implanted cardioverter-defibrillator (ICD) or pacer-ICD
- Atrial dysrhythmias will not affect LVAD
- *Synchronized cardioversion and defibrillation OK using usual pad placement*
 - Move controller unit away from defibrillation pads
- Patient may still be conscious and perfusing
Arrhythmia

• Patients having arrhythmia problems may be functioning fairly normally
 ▫ Despite being in a lethal rhythm (VT), blood is still flowing to the body.
 ▫ They may have minimal symptoms, not be alert, or unconscious
Bleeding

- Most common in the GI tract and the brain
- Risk of bleeding is increased because LVAD patients need to be on anticoagulation
 - Warfarin and ASA (2nd Generation devices)
- GI bleeding is often from
 - Arterial-venous malformation (AVM)
 - Ulcer
- Bleeding in the brain is often from
 - AVM
 - Hypertension (HTN)
 - Stroke – ischemic (pump ?) or hemorrhagic
 - Trauma
Infection

- Driveline
 - Usually due to trauma
 - Excessive moisture
- Pump Pocket
 - Extensive driveline infection
- Systemic
 - Can be from an extensive driveline infection
 - From another source
 - May quickly develop septic shock
Acute MI Considerations

- May not have hemodynamic compromise with LVAD maintaining perfusion
- Right Ventricular MI can decrease filling of the LVAD and cause pulmonary edema and/or hypotension
- Ventricular paced rhythms should not be read as ***Acute MI*** by 12 lead ECG algorithm
Special Pump (LVAD) Considerations

• **“Red Heart Alarm”:** mechanical pump failure
 ▫ Symptoms: dyspnea, nausea, syncope, loss of consciousness

• LVAD pump filling depends upon right heart filling
 ▫ Hypervolemia, right heart failure (e.g. RV infarct) or cardiac tamponade reduces right heart cardiac output
 ▫ Treatment: IV saline bolus – at least 500 mls
Warning! Warning!

Code Situation

- **Hazard Alarm: Red Heart**
- **Tone: You will hear a CONTINUOUS alarm.**
 - Pump has stopped
 - Low flow <2.5 liters/minute
 - Driveline is disconnected
Code Situation

- Follow ACLS protocol for
 - Intubation
 - Medication administration
- Defibrillation
 - Most patients will have an AICD
- External Pacing and defibrillating is okay
 - Don’t place paddles over AICD or driveline of LVAD
CPR if Clinically Indicated

- What does this mean?
- Needs to be viewed cautiously because CPR may result in dislocation or damage of the cannulas or ventricle rupture, requiring emergency thoracotomy and heart surgery.
- But, if the patient is dead then can we really hurt them?
CPR or No CPR, That is the Question

- **Unconscious**
- **Apneic**
- **Unresponsive**
- **Pump is not running (Red Heart Alarm)**
 - CPR is indicated
 - If there is good perfusion and pump is still running, CPR is not indicated
- Find the other reason for unresponsiveness
- CPR as an absolute last resort
Reverse 911 Call for EMS

- These patients are leading normal lives
- Traveling, golfing, and riding motorcycles
- For example:
 - Patient shopping at mall
 - Battery alarm goes off and forgot spares
 - Called 911
 - Code 3 transport to patient’s home with lights and siren
 - Local hospital would not have proper equipment
Transport to Hospital

- Bring all the equipment to the hospital!
 - Back-up system controller and batteries
- Contact receiving hospital you are en route with a patient who has a LVAD
- Brownie points: contact the implanting hospital
- \textit{LVAD coordinator should have already been contacted even before 911 initiated}
Treatment Summary

• BLS and ALS treatment guidelines and procedures are applicable in LVAD patients.
• All ALS drugs are applicable in LVAD patients.
• There are No absolute contraindications for treatment guidelines or drugs.
• CPR: Unconscious, unresponsive, apneic, and with “Red Heart Alarm” audibly sounding on the controller unit.
Treatment Summary

• Take all LVAD equipment to hospital
 ▫ Power Base Unit
 ▫ All batteries
 ▫ Hand pump (displacement/pulsatile LVAD unit only)

• Keep patient’s trained companion with the patient (will manage LVAD)

• Anticipate expeditious (damn fast) interfacility transfer to LVAD program home hospital
Automatic Internal Cardioverter Defibrillator (AICD)

- Developed 1980’s
- Implantable – now inserted transvenous
- Treat cardiac tachydysrhythmias – especially ventricular
 - Sudden death survivors due to VF or VT (secondary prophylaxis)
 - Primary prophylaxis based upon guidelines
- Sensors can hopefully recognize supraventricular tachycardias – minimize shocks
- Magnet temporarily turns off defibrillator but not pacing
Automatic Internal Cardioverter Defibrillator

- Fixed rate (asynchronous) – R on T risk
- Demand (synchronous)
- Magnet inhibition – temporarily “reprograms” into asynchronous mode.
- If left on for 30 seconds, ICD turned off.
- To reactivate, remove the magnet and then replace the magnet.
- Listen for the tone(s)
Automatic Internal Cardioverter Defibrillator (AICD)

- Complications
 - Pain
 - Bleeding
 - Pneumothorax and/or hemothorax
 - Cardiac perforation
 - Infection
 - Lead dislodgment
 - Lead fracture
 - Inappropriate shocks
 - Erosion device through skin
- Resuscitation – defibrillation 10 cm away
External Defibrillator
What to do?
Temporary device
Pacemaker
Pacemaker

- Indications
 - Sick sinus
 - Symptomatic bradycardias
 - Tachycardia-bradycardia syndrome
 - Complete atrioventricular block (3rd degree)
 - Prolonged QT
- Generator and pacing leads, inserted transvenous
- Pulse generator placed subcutaneously or submuscularly
Pacemaker

- Complications
 - Failure to output
 - Failure to capture
 - Failure so sense
 - Pacemaker-mediated tachycardia
 - Runaway pacemaker
 - Pacemaker syndrome
Pacemaker

• Complications
 ▫ Twiddler’s syndrome
 ▫ Pain
 ▫ Bleeding
 ▫ Pneumothorax and/or hemothorax
 ▫ Cardiac perforation
 ▫ Infection
 ▫ Lead dislodgment
 ▫ Lead fracture
 ▫ Erosion device through skin
Home Infusions

- Insulin
- Pulmonary hypertension
- Antibiotic and other anti-infectives
- Vasopressors and inotropes - i.e. Dopamine for heart failure
- Hemophilia (factor therapy)
- Parenteral nutrition
- Intravenous gamma globulin (IVIG)
- Colony stimulating factors
- Chemotherapy
- Pain management
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP
Intratheal Pumps and Infusions

- Medications
 - Baclofen
 - Morphine

- Indications
 - Pain from severe spinal arthritis, spinal stenosis
 - Cerebral Palsy

- Access port to refill medications

- Programmable

- Battery changing is surgical procedure
Intratheal Pumps and Infusions

• Complications
 ▫ Pain
 ▫ Bleeding
 ▫ Infection
 ▫ Erosion
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP
Ventricular Peritoneal (VP) Shunt

• Placed for hydrocephalus
• Decrease intracranial pressure
• Drainage of CSF into abdomen
• Complications and issues
 ▫ Disconnection
 ▫ Fracture or dislocation
 ▫ Erosion of shunt into other organs
 ▫ Infection at the site and/or deep – needs emergent removal
Ventricular Peritoneal (VP) Shunt

- Signs and Symptoms caused by malfunction
 - Headache
 - Seizures – new or increased activity
 - Lethargy
 - Vomiting with little to no nausea
 - Altered personality
 - Altered intellectual ability
 - Visual disturbance
Ventricular Peritoneal (VP) Shunt

- **Young child**
 - Impatient
 - Grouchy
 - Whiny
 - Anxious
 - Bulging fontanel and/or head enlargement
 - Mental and/or physical abilities (milestones) lost
 - Downward deviation eyes – diesel therapy
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP
Deep Brain Stimulator
Deep Brain Stimulator

- Indications
 - Parkinson’s Disease
 - Depression
- Parkinson’s Disease inserted into Thalamus or subthalamic region
- Eradication tremor and dystonia
- Programming issues
Deep Brain Stimulator

- Complications
 - Side effects of stimulation
 - Numbness
 - Weakness
 - Double vision
 - Imbalance
 - Problems thinking
 - Superficial bleeding
 - Bleeding into the brain (stroke) and/or death
 - Wound infection
 - Fracture of hardware
 - Erosion
Vagus Nerve Stimulator
Home Dialysis

- Hemodialysis
- Peritoneal
Dialysis

• Cardiovascular mortality is 10-20 times higher in dialysis patients than the normal population.
• All cause mortality in dialysis patients older than 65 years is more than 6 times the general population.
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP
Dialysis

• Arterial-Venous (AV) Shunt malfunction
 ▫ **Bleeding – can be severe** *Don’t use tourniquet*
 ▫ Infection
 ▫ Clotting

• Electrolyte abnormalities
 ▫ Hyperkalemia – sodium bicarbonate and Albuterol
 • Arrhythmias
 • Monitor abnormalities
 • Acidosis
 ▫ Hyponatremia
 • Mental Status changes
 • Seizures
 • Fluid overload
Dialysis

- Hypocalcemia or Hypermagnesemia
 - Weakness
 - Arrhythmias
- Hypocalcemia
 - Tetany
 - Parasthesia
- Hypermagnesemia
 - Neuromuscular depression
 - Loss of reflexes
Dialysis

- Sepsis – cautious fluid administration
- Cardiac arrest – standard ACLS with consideration of sodium bicarbonate (base hospital)
- Pericardial tamponade
- Fluid overload - nitrates
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP
Dialysis

• Peritoneal Dialysis
 ▫ Peritonitis – occurring once per year
 ▫ Abdominal pain – generalized versus localized
 ▫ Fever
 ▫ Cloudy effluent – ask the patient

• Site infection – local site redness
Halo Devices
External Fixators
Technology Complex Patient
by Dr. Eric M. Rudnick, MD, FACEP
Exoskeletons
Robotic Limbs
What Does The Future Hold?